

PUMPING IRON We look at an important
aspect of robot design — the control and
movement of the robot arm and hand

EASTERN PROMISE A review of the first
two computers available that conform to the
MSX standard — the Sony Hit-Bit and
Toshiba HX-10

: __ |

COMPLETE CO OL The Macintosh
and Lisa computers are examples of the
most advanced integrated systems on the
market. We conclude our series by looking
in detail at how they work |

STAR WARS Atari’s Star Raiders is a war 1) What is the purpose of the keywords displayed at
game in an intergalactic setting in which you: 680 the bottom of an MSX machine's power-up screen
command a spacecraft display? :

2) What is a UART, and what does itdo? — |
3) How do Cartesian co-ordinates get their name?
4) Which game, popular on mainframe computers,
was the model for Atari’s ‘Star Raiders’? ©

COMPUTER SCIENCE

BUGS IN THE WORKS Our Loco course
progresses to the use of sprites in the
language and concentrates on the
Commodore machines

FREQUENCY TO FUZZY THEORY A
weekly glossary of computing terms

ROLL CALL We continue to refine our Saar ne Aint Seen abe: S for Sine Man, Resear Mel Das, Sa
BASIC programming with a program that 664 thsctar Slonlcr Esjeid. Pubkehed ty tie Pasisbislie Eaeaatetein gree ice.
creates a list of variable names ‘rector David Breed: Markating Director Michel Joyce: Designed and. produc

oe One Ss wy UC, : cas

. _. ee : _ _ _ _ | nui oes one, . :
: se e ce se : :

INS & OUTS Our machine code course Sra Gains Mabon eee SUT MATE HEE TUG OT AE aan
advances to one of the most important tasks / GRIME Pace BIGIAET Sabsonption 6 onthe: 20890, Year G47 64 Binder Hees aud es 8
in programming —- input and output _ Bara. Suave: ES14b, | youre £75.00. Sunaee, BOE 80 Cider: 2600 Ny :

: : BC ut D nor ir oF se 53 fi . yea | : Q

IN os irfac : : SS .) : . : ee : E i He . j OF IP ig, FU 2

RAISE THE ALARM We bring our relay | EH076. Surtace. £60 9 On ek, S
box under software control by programming 4 Toupee oc at or 2
the computer to operate an alarm system 487. Telephone 01-3796 ld be made gaya =
and clock charge carriage in the U ————_—_—eOO ££

: E - Bir 3 and ba oS 6 : ae H

. ae i pr 2 of fs ir t : es

REFERENCE CARD We continue to list INSIDE —_| Astalian: markets ony. ‘sublet ino Ov alo laa e _INGIUGE? If ING dDOVE Di «ss . cc
extracts from the Z80 programmers’ BACK | Aamnnyeatks ROE TIW Teephone: Mee TZuRk Honeedbe pool oioe sion bana :
reference card COVER | Publishing Limited, Postage and packaging is included in subscription rates, and prices are given =

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

—#

ROBOTICS/ APPLICATION ~

PUMPING IRON

Having considered the various methods that
are used to control robot movement, we now
turn our attention to an equally important
aspect of robot design — the control and
movement of the robot’s ‘arm’ and ‘hand’.

A robot’s effectiveness depends to a large degree
on the precision with which it can manipulate
objects. Many robots are used primarily for “pick
up and place’ operations — moving components
in a factory from one conveyor belt to another, for
example. Thus, the design of the robot arm is of
paramount importance.

In general, there are three requirements that
must be considered. A system must be developed
to describe the position of the arm at any time; the
arm must have a ‘skeleton’; and there must be a
‘muscle’ system that will actuate the arm and
enable it to be controlled. The different ways in
which these vital elements interact tend to dictate
the overall appearance of robot arms. However,
different types of arm may be roughly classified by
considering the spatial methods used to describe
the arm’s exact position at any given time.

In our discussion of robot movement (see page
621), we described the Cartesian co-ordinate
system. Using this method, the position of the
robot on the floor was specified by means of two
axes — x and y — at right angles to each other.
The same principle can be applied to a robot arm,

but, because an arm may move freely in three
dimensions, we need to add another variable — z
— to describe the arm’s vertical position. Using
these x, y and z co-ordinates, we can describe the
position of the arm anywhere in space (‘space’
simply being the mathematical way of describing
any open area).

It is possible to construct a robot arm that moves
exactly along these three co-ordinates: the result
will be something that looks a little like an
overhead gantry crane that can move up/down,
side-to-side, and forwards/backwards (or all
three directions in combination). Arms like this
are well suited to jobs in which work is done over
some fixed area. For instance, the robot might
have a workbench at which all its tasks are carried
out, and, in this case, a Cartesian arm will be more
than adequate. But this method does have its
disadvantages. For example, such arms require a
substantial frame, which makes them inflexible in
applications away from the workbench.

Another method of describing the position of
an arm uses cylindrical co-ordinates. To
understand how these work, think of an empty tin
can; you will realise that any position inside the
can may be described by specifying its distance
from the centre of the can (using a distance
variable, r); how far around the can it is from some
fixed point (using an angular variable, 0);
and how far up the side of the can it is (using

IAN McKINNELL

Double Jointed
For the next decade, the
archetypal robot will be the
simple arm equipped with a
variety of ‘hands’ for industrial,
household and hobbyist use.
Very few applications really
require the self-propelled
autonomous thinking machine |
of sci-fi myth, but a
programmable semi-intelligent
gripper is as significant a device
as the plough or the telescope

THE HOME COMPUTER ADVANCED COURSE 661

Robotic Rotations
The simplest arm, consisting of
a gripper and a two-axis elbow
joint, is capable of precise
positioning in a very large
volume ofspace as these

- illustrations show.
The elbow is hinged,

permitting semi-circular vertical
movement, and pivoted, which
allows horizontal circular
movement. The arm moves to
any point on the access
hemisphere by rotations at the
pivot and hinge. These can be
derived by trigonometry from
the Cartesian (x,y and z) co-
ordinates of the point as shown:
H, the pivot rotation, is equal to
ARCTAN(x/y), while V, the hinge
rotation, is ARCSIN(z/R). The
arm is programmed with the
Cartesian locations of objects; it
transforms each set of co-
ordinates into two rotations
which it sends to its two
servomotors, thus effecting
movement ;

VERTICAL ROTATION

another distance variable, z). So by using
cylindrical co-ordinates it would be very easy to
develop a system that could pick out any object
from a specified position inside the can.

Arms that use spherical co-ordinates take this
process one step further by specifying a position in
terms of two angles and one distance. In this case,
‘distance’ is the length of the arm, and the two
angles are the amount by which the base rotates
and the angle of elevation of the arm. Arms suchas
these are very much like a gun turret, in which the
length of the gun barrel may be varied. Spherical
co-ordinates are usually described as r, 8, and ©.
For the robot engineer, it is simple enough to
design an arm that can move in and out
telescopically, possibly driven by hydraulic power.

The final, and most common, method of
describing the position of an arm is by using
revolute co-ordinates. This is a system that is
specifically designed to control robot arms by
imitating the actions of the human arm. As before,
three variables are needed to specify the arm’s .
position; this time they are all angles and could be
described as 8, © and y co-ordinates. 6 (theta)
refers to the angle through which the base is
rotated; © (phi) refers to the angle of elevation of
the arm; and y (gamma) describes the angle of
a second arm joint.

BUILDING UP MUSCLE
The chosen co-ordinate system will dictate the
type of ‘skeleton’ a robot arm requires. All that is
needed now is some ‘muscle’ to power the arm’s
movement. In general, there are three types of
robot muscle used — electrical, hydraulic and
pneumatic. Let’s look at these in turn.

We have already discussed electrical power in
connection with robot movement. The same
electrical stepper motors may be used to power
robot arms. For example, they can do so directly,

662 THE HOME COMPUTER ADVANCED COURSE

ACCESS HEMISPHERE

by having a powerful motor at each arm joint and
letting this rotate by a small amount for each joint
movement, or indirectly, by means of gears,
pulleys or levers.

However, a better system would involve
making the robot ‘muscles’ work in much the same
way as our own — by expanding and contracting
so as to act on the skeleton of the arm directly. This
is done by arranging a series of pistons to act on
each arm joint. These pistons may be hydraulic
(using fluid) or pneumatic (using air). For use with
massive industrial robots, hydraulic power is
preferred as this can provide much higher pressure
(giving more force to the arm) and because fluid
does not compress or expand to the same extent as
air does.

This means that when a piston is moved along a
cylinder by hydraulic pressure it does not
‘bounce’, but stops at precisely the desired point.
Air, by contrast, does not allow such precise
positioning. No matter which system is used,
single or double action pistons may be utilised to
produce motion in the arm. This type of motive
power is called a linear actuator.
A further refinement is possible. Instead of

using pistons that move backwards and forwards
and then translating this movement into a rotation
at the joint, a rotary actuator may be used. This
produces direct rotation in the joints by means of
pressure on a vane inside a circular housing. This is
a similar process to the use of an electrical stepper
motor, but the hydraulic pressure means that far
more power may be exerted. Pneumatic pressure
is unsuitable for this type of application.

Once the mechanics of the robot arm have been
decided upon, all that is needed is a ‘hand’ (or end
effector) so that, once the arm is correctly
positioned, it can actually do something. Here, it is
instructive to think about the way a human hand
works. Consider the human wrist — if this was

KEVIN JONES

encased in plaster so that it could not be moved,
most tasks would be much more difficult. When
operating a keyboard, for example, the wrists
allow your hands to move up and down as you
strike the keys — this is known as ‘pitch’, and
without it, you would have to move the whole
forearm up and down when typing.

Your wrists also move from side to side as you
press the different keys — this is ‘yaw’, and the
absence of this would entail elbow movement.
Once you have finished typing, you can turn your
wrists so that your hands rest, thumbs upwards, at
the side of the keyboard. This is known as ‘roll’ and
would require a complicated set of shoulder
movements if wrist movement was not available. |

Ideally, then, these three different movements
should all be built into the robot wrist. Each of the
movements — pitch, yaw and roll — can act in
two directions (up/down, left/right, clockwise/
anticlockwise) and each of these is called a ‘degree
of freedom’. So a robot that incorporates pitch,
yaw and roll can be said to have six degrees of
freedom. Robots are built with lesser degrees of
freedom — perhaps four or five — but for each
reduction in wrist movement there is a
corresponding increase in the movements that
must be made by other, larger parts of the arm.

THE ROBOT HAND
We must now consider the design of the hand
itself. The ideal configuration would be a human-
like hand at the end of a human-like arm, and
some robot hands do approach this definition. The
most common form of robot hand is a three-
fingered gripper — consisting of two fingers plus
an opposing ‘thumb’ — which enables the robot to
grasp objects in much the same way as a human
hand would.

The power used to drive the hand can be any of
the three types already mentioned, and will
depend on the task the robot is to perform. If the
hand must move large objects weighing several
hundred pounds, hydraulics will probably be
necessary. But for many applications, simple
electrical or pneumatic power will suffice because
the hand will need only to grip an object and
release it when desired — if the arm and wrist have
positioned the hand correctly, this will not require
any great accuracy; a simple opening and closing
movement will be enough.

In many cases, though, the robot arm will not be
fitted with a hand. We have already used the
phrase ‘end effector’ to describe a hand, but this
can just as easily refer to many other things. A
robot that is used for welding does not require a
hand at all—a welding gun may be fastened
directly to the wrist. In fact, some robots are
capable of choosing the correct end effector for the
task they are carrying out; they can discard one
end effector (a screwdriver, say) and insert
another (a spray gun, for example) into a standard
socket at the wrist. This may not be a particularly
human-like action, but it serves to make robots
extremely adaptable.

Robot Wrist
If the simple two-axis arm
illustrated is equipped witha .
flexible wrist, then its access
space is greatly increased in
volume; the complexity of the
-c0-ordinate transformations

increases with the wrist
articulation, but the
mathematics are trivial
compared with the engineering
problems of lightness, strength,
accuracy and flexibility. The real
software problem is in
‘deciding’ which of the many
possible gripper orientations
best suits the object to be
gripped

Pitch And Yaw
The human wrist’s capability for
pitch and yaw (up-down and
left-right movement) is limited
by precisely those constraints
that affect robot designers; i.e.
the problem of reconciling
strong, compact joints with the
need for flexibility and lightness.
These joints do not add much to
the access space, but they do
greatly increase the arm’s ability
to manipulate real objects

Roll And Extension
These are simpler joints to
construct, and contribute far
more to the arm's access space
than do the pitch and yaw joints.
Arms equipped with only roll
and extension capabilities are
adequate for the majority of
industrial applications

THE HOME COMPUTER ADVANCED COURSE 663

Searching Hi And Lo
On the BBC Micro and the

‘Spectrum a program line
_ begins with three or four bytes

dedicated to the line number
and the length of the line. This
is followed by the tokenised
BASIC text. When the program
encounters the line it records
the line number and calculates
the start address of the next
line from the length of the
current line. It then ‘slides’ the
search template along the

program text until it meets
end-of-line, end-of-program,
a REM token or a successful
match

ROLL CALL |

m

computers and provide editing facilities or
other programming aids are known as
‘utilities’. We begin a series of articles that
explore a range of utility programs for the
more popular home computers and develop

tilities

varies considerably: some computers have only
a simple editor, as in the Sinclair Spectrum, while
other machines feature more extensive facilities.
The BBC Micro, for example, includes the TRACE
and RENUMber commands: the former causes the
line number of each BAsic statement to be
displayed as the line is being executed, and the
latter automatically renumbers the lines of a BASIC
program. Both of these facilities are immensely
useful in program development and debugging.
But whatever is provided with your machine, it is
invariably helpful to have additional utilities, and
there is a wide range of commercially available
programs to choose from.

Utility programs are | generally written in
Assembly language, partly because of the speed of’
machine code and partly because it is not easy for a
BASIC program to alter itself without crashing the
computer. However, we will begin by looking at
some simple utilities that can be writen in Basic. In
this way, we can concentrate our attention on what
a utility program has to do, without having to
consider other complicating details, such as the
role of the computer’s operating system and the
BASIC interpreter.

Although it is difficult for a BAsiIc program to
alter itself, there is no problem in creating a BASIC
program that inspects another BASIC program. The
utility program we give here, in versions for the
Spectrum and the BBC Micro, searches through a
BASIC program for the name of a variable or
function, and prints the line numbers where the
name is found.

Both programs begin by finding where the
program text starts in the computer’s memory.
Then they go through the program line by line,

664 THE HOME COMPUTER ADVANCED COURSE

skipping over those sections that cannot include a
name and extracting all the names. The final step
involves comparing each extracted name with the
name the program was asked to find.
When the program starts its search of a new line

of BASIC text, it first notes the line number, which in
both cases is stored in two bytes, and the line’s
length (the number of bytes it occupies). In the
BBC Micro, the line length is contained in one
byte, and is the total number of bytes in the line
from the line number to the end-of-line marker
(ASCII code 13), In the Spectrum, the line length
is stored in two bytes, and represents the number
of bytes from the character following the length
bytes to the end-of-line marker (thus not including
the line number and line length bytes in its total).
In both versions of the program, we ignore all
the REM statements and anything that is enclosed
in quotes, as we will not normally have any
program variables in these character strings. The
BBC Micro allows you to include hexadecimal
numbers in a program, prefixed by the character &.
We need to make sure that our program does not
mistake these hexadecimal numbers for variable
names, and therefore we need to make the
program skip over any strings preceded by an &.
For example, we do not want our program to
mistake the hex number A0 in &A0 as the variable
name ‘AQ’.

In the Spectrum, numbers are stored in a
program as the ASCII characters for the digits of —
the number, followed by the ASCII code byte 14,
and then five bytes containing the binary
equivalent of the number. Our program needs to
be able to skip over the number code and the five
byte binary equivalent.

Having tested for these conditions, the program
proceeds to inspect the current line for any names.
In both programs, a name is defined as beginning
with a letter, followed by another letter or a digit.
The BBC Micro version allows integer variables
(distinguished by a % character after the name)
and the underscore character, and both versions
allow string variables, which are followed by a $
character.

The name of an array, a function or (in the BBC
Micro) a procedure will be followed by an open
bracket — (. Strictly speaking, this is not part of
the name, but is used by the programs to
distinguish these from simple variables.

There are further complications in the
Spectrum program. In particular, Spectrum Basic
does not distinguish between upper- and lower-

_ case for characters in a variable name. Thus, FRED,
Fred or FRed are all treated as the same variable
name. The Spectrum program, therefore, converts

all letters to upper-case before it starts its
matching. The Spectrum will also allow spaces to
be included in variable names, but these can lead
to problems and we advise against their use.

Spectrum BAsic does not make the strict
distinction found in most other BASIC omens
between string variables and string arrays —
fact, a Spectrum string variable is more ae a
character array. Since we can have, for example,
TS and TS(i), referring to a string and part of the
same string, the program does not attempt to
distinguish between simple string variables and
string arrays. This is not a real limitation, however,

Spectrum BASIc does not allow you to have a
string variable and array with the same name.

To use our utility program, first type it in and
save it, and then merge it with the program you
want searched, using the MERGE command on the
Spectrum or the method described in Chapter 377
of the User Guide for the BBC Micro. Invoke the
search routine with RUN 9000 (Spectrum) or GOTO
30000 (BBC Micro), and type in the name you
want to find when asked for it. If you want an array
name, add an open bracket at the end of the name.

Finally, as an exercise, you may like to use the
principles described here to write a program that
tells you which lines in a program contain a call toa
specified subroutine. In the next instalment of this
course we will supply a full listing of this program
for the Commodore 64.

©0000000

~ THE HOME COMPUTER ADVANCED COURSE 665

BUGS IN THE WORKS —

Having covered turtle geometry in some
detail, the course moves on to look at LOGo’s
use of sprites. We start with a discussion of
the basic principles behind turtle sprites,
drawing our examples from Commodore

Using LoGo, sprites act in a similar way to turtles,

obeying all the commands that a turtle obeys.
‘Unlike turtles, however, we can define the shape
of a sprite ourselves — although these shapes do
not rotate on the screen as the sprite’s heading
changes, in the way that a turtle does.

In Commodore Loco, the turtle is counted as
sprite number 0, and there are seven other sprites
— numbered 1 to 7. To begin with, sprite 0 is the
‘current’ sprite, and obeys all the sprite commands
entered. To make sprite 1 the current sprite, you
simply type in TELL 1. From then on, all sprite
-commands will be obeyed by sprite 1 until a
different current sprite is specified. .

After typing TELL 1, however, you won't see
anything on the screen. This is because all the

sprites, other than the turtle, begin as ‘hidden’
objects and have their pens up. In order to see
sprite 1, and see where it moves, you have to type
ST, and a vague square will appear on the screen.
Experiment with this sprite grid, using the turtle
commands FD, BK, RT, LT, PD, PU, ST, HT, and so on.

If you move sprite 1 to the same position as
sprite 0 (the turtle) you will notice that it appears
to be behind the turtle. In general, lower
numbered sprites are shown ‘in front of’ higher
numbered sprites. This is useful for three-
dimensional effects.

There is a sprite editor on the Commodore |
LOGO utilities disk. Read this in by typing READ
“SPRED. To edit the shape of sprite 1, first make it
the current sprite with TELL 1 and then type EDSH.
The display will show a much enlarged view of the
sprite grid and we can now move the cursor
around the screen. Pressing the asterisk key (*) will
fill in a pixel, while pressing the space bar will
blank it out. |

Having designed your sprite, press Control-C
to define the shape. If the sprite is not visible, try
entering ST. This same shape can now be given to
other sprites as well. SETSHAPE 1 will give the
current sprite the same definition as sprite 1.
Having defined a set of shapes, you can save the
sprites to a file with SAVESHAPES “FILENAME, and
read them back with READSHAPES “FILENAME.

There is a well-known mathematical problem in ©
which four bugs are placed at the corners of a

666 THE HOME COMPUTER ADVANCED COURSE

os

square. They are all set off at the same speed and
each follows the bug to its right. The objective is to
trace their paths. We give a Loco program here
that implements the problem using sprites.

The procedures that we give simply position a
copy of the same sprite at each corner of the
square, and then set them off following each other.
The bug shape is defined as sprite 3, and the others
are all given the same shape using SETSHAPE 3 in
the position procedure.

The heart of our solution lies in the FOLLOW
procedure. In this, X and Y are first set to the x and y
co-ordinates of the sprite that is being followed
(:B), and then the sprite that is doing the following
(:A) has its heading set towards this point. To do
this, we use the primitive TOWARDS. This takes two
inputs, which represent the co-ordinates of the
point to be headed towards, and outputs the
heading from the current sprite to that point.

ANIMATION
One interesting use of sprite graphics is in the
creation of animation effects. A series of sprite
shapes representing the same object is defined.
Each of these is slightly different from the one
before, and when they are run together they give
the effect of motion. Commodore Loco gives three
shapes that are a crude attempt at a man running.
The following procedures set up the screen, and
then set the three shapes in motion.

TO RUNN
TEELO
DRAW
PU.
BIGX BIGY
SETH 90
RUNNING 2

END

TO RUNNING :SHAPE
FD5
SETSHAPE :SHAPE
IF SHAPE = 4 THEN MAKE “SHAPE 1
RUNNING :SHAPE + 1

END
Before running these procedures, read in the file
SPRITES from the utilities disk. This contains a
number of useful procedures including BIGX and
BIGY, which double the size of a sprite. SMALLX and
SMALLY are the reverse procedures: these are used
to return a sprite to its original size. Read in the
three sprites by typing READSHAPES “RUNNER, and
then run the procedures. |
We also define four sprite shapes on the

following page, which we will use in a game in the
next instalment.

LOGO/COMPUTER SCIENCE —

Logo Flavours
Neither Spectrum LOGO nor the Apple LOGOs
features sprite graphics.
Atari users should note the following differences:
1) There are only four sprites available.
2) For SETSHAPE use SETSH.
3) The sprite editor is included among the
primitives. Pressing the Space bar fills an empty
pixel, or blanks a filled one.

Dragon Rampant
In the next instalment we will
publish the knight and dragon
game, which uses Commodore
LOGO’s sprite facilities to
explore the pursuit algorithm in
the bug demonstration. The
sprites shown here are
suggested shapes for use in the

j LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 667

Three Bugs Exercise
Write a LOGO program for another bugs problem,
this time with three bugs at the corners of a triangle

668 THE HOME COMPUTER ADVANCED COURSE

MSX MACHINES/HARDWARE ,

EASTERN PROMISE

Over a dozen Japanese companies, many of
them household names in other areas of
consumer electronics, have agreed on the
MSX blueprint for a standard home
computer. We take a look at the first MSX
micros to reach the UK — the Sony Hit-Bit
and Toshiba HX-10.

The MSX standard (see page 141) dictates the
CPU that is used (Z80); the minimum amount of
ROM (32 Kbytes) and RAM (eight Kbytes); the
type of graphics and sound chip; keyboard
contents (though layout can vary); the minimum
number of interfaces and their design; graphic and
text screens and, of course, the BAsic language that
is contained in ROM. Because MSX is a standard
design, it is to be expected that MSX machines will
all be similar. Manufacturers have flexibility in the
amount of memory beyond the minimum, the
type of keyboard used, and the number of extra
interfaces. In practice, Sony and Toshiba, like
most MSX manufacturers, have gone for a higher
specification than the minimum requirement.

The Sony Hit-Bit and the Toshiba HX-10 both
have good quality keyboards, although some
people might find the keys too sensitive. Both
micros come with 64 Kbytes of main memory, and
16 Kbytes of additional RAM dedicated to the
video display. This gives a total of 80 Kbytes —
more than is provided on most home computers.
The Sony and Toshiba models each have a
standard Centronics printer interface and a pair of
joystick sockets — items that are often optional
extras on home computers. 7

Originally, it was expected that the MSX
computers would be cut-price machines, but
currency fluctuations and increased manu-
facturing costs have pushed prices up. The Sony,
for example, sells for around £300, and the
Toshiba is priced at about £280. Another reason
for the price increase has been the rush to get the
machines onto shelves in Europe. Toshiba is
sending all its machines out via costly air-freight,
rather than by ship. The company has had to
switch all its production lines from building
Japanese versions of the machine to constructing
the UK model, in the hope of being the first MSX
manufacturer to have a product on sale in the UK.

One of the first things you notice when you
power up an MSX micro is a row of words across
the bottom of the screen. These are keywords from
the BAsic language, such as RUN, CLOAD“, LIST, etc.
The micros have five function keys that produce
these commonly used words. The words on the
screen serve as labels for the function keys so that

the user does not have to remember the function
of each key.

These keys are automatically defined when the
machines are turned on, but it is easy to change
their definitions by using the KEY command.
Although there are five keys only, up to 10
functions can be accessed by pressing the Shift key
and the desired function key at the same time. As
Shift is pressed, the labels on the screen change to

Standard System
The Toshiba HX-10 has two

joystick ports, a Centronics

parallel printer interface, ROM
cartridge port, and cursor
cluster, as shown here. MSX
BASIC deals with joystick
control in the same way as
control via the cursor, so games
can be written for one type of
control, and automatically make
use of the other as well

THE HOME COMPUTER ADVANCED COURSE 669

CHRIS STEVENS

Re

ean ee

ee
ee

Ate saeiio:

:
:
. Rees

Sa

reflect the new functions assigned to the keys.
Each function label can contain up to 15
characters, although only the first seven of these
will appear on the screen.

The keyboard and screen editor work together
to make editing easy. Four keys move the cursor
around the screen, and changes can be made
anywhere on the screen by simply over-writing the .
existing characters. Inserting and deleting
characters requires single keypresses. ‘The cursor
keys on the Toshiba HX-10 are the same size as
other keys on the keyboard, but the Sony Hit-Bit
uses large distinctive keys for its cursor cluster.
These keys are used often, so such a design can be
very handy. |

As with the hardware, the MSX software is
filled with extra features. MSX Basic includes such
commands as AUTO and RENUMber, and contains
several commands to handle sound, graphics and

670 THE HOME COMPUTER ADVANCED COURSE

‘interrupt handling’. There are three primary
commands to create graphics. LINE draws a line
between two points, although it can also be used to
draw a square by adding the letter B (for “box’)
after the co-ordinates. Adding the letters BF (for
‘box fill’) draws a square of solid colour. The
CIRCLE command can be used to draw ellipses and
arcs aS well as basic circles. And the PAINT
command will fill any outlined shape with solid
colour, managing to cope with even the most
awkward shapes.
Many other useful features are included in

MSX sasic, although the most impressive set of
commands — for ‘interrupt handling’ — may not
be appreciated at first. Interrupt handling is very
useful in high-speed graphics programming.
There are a number of situations in which a
program must perform one task, while constantly
checking to see if something else happens. A

MSX Standard
CPU Z80A, 3.58 MHz

Minimum 8K

32K including BASIC

16 colours, 256x192 graphics, 32
sprites, 40x24 text display (or 32x24)

(T| 9978 video chip or equivalent)

SOUND 3-channel, accessible from BASIC
(AY38910 sound controller chip)

INTERFACES (SX cartridge port, modulated TV
output, Centronics parallel printer,
cassette interlace

KEYBOARD QWERTY keyboard plus special
function keys, 4 cursor keys, 10
programmable function keys

typical example of this can be found in Space
Invader type games. The program must keep the
aliens moving around the screen, all the while
checking whether the ‘fire button has been
pressed. The program needs to do two things at
once, by switching rapidly between tasks.

The MSX solution is to designate certain things
as ‘events’. Instructions are provided to tell the
computer to look out for an event. When one
occurs, the computer automatically switches to a
subroutine to deal with the event.

The MSX graphics screen can display 16
colours with a resolution of 256 by 192 pixels. Up
to 32 eight by eight pixel sprites can be defined (or
16 sprites of 16 by 16 dots, or eight sprites of 32 by
32 dots). To make the most of the sprites, MSX
BAsSIc includes a full set of dedicated commands,
such as SPRITE to define a sprite, and PUT SPRITE to
position one anywhere on the screen.

As .the MSX manufacturers have claimed,
plenty of cartridge software is already available for
the machines. And the promise of compatibility
appears to be true — software for the Toshiba
HX-10 works perfectly on the Sony Hit-Bit, and
vice versa. This applies both to cartridge software
and cassette programs. After years of non-
compatible systems, it seems almost magical to
take a cartridge out of one computer and use it on
another. The MSX companies are relying on this
feature to make a wide range of software very
quickly available for all the machines.

Whether MSX will have the market impact that
the Japanese are hoping for remains to be seen.
With strong competition ahead from Sinclair,
Commodore and Amstrad, among others, a sales
struggle looms. Nevertheless, the MSX machines
do live up to their manufacturers’ claims. They are
well-equipped, fun-to-use computers at a
reasonable price.

Standard Interface

MSX MACHINES /HARDWARE

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 671

~ COMPLETE CONTROL

ee ee eee eee ee

Operating Under Orders |
- With the traditional operating
system the program currently
running has complete charge.
Its logic determines what
appears on the screen, when the
disk drive is to be accessed and
how to interrogate the keyboard.
Its general instructions are
passed to the operating system,
which manages the detailed
driving of the particular
hardware in use. The program's
execution is paramount, and the
operating system's
subordination is taken for
granted

The alternative approach to integrated software is

the last instalment of this series on
integrated software we looked at the most
common approach, that of producing all-in-
one programs covering all the functions that
you need. However, this is not the best
system, as such programs are huge and
wasteful of memory. Now we look at a more
versatile method.

DOCeeee

xX

xX >
FT MM IOS CGC CC CCC O.0.C.
KOO QP PPO POOOOOOOOOOOOOOK
: ‘ ; 3 >,

5
APA, 5005,

Cay

SOV OO CCCI GOO, OO,
KO GOPQPOPOPD

based on a completely different principle. This
‘relies on the computer’s operating system to
provide the basic facilities of integration, and
individual programs written to work with that
system will automatically fit and work together.

Creating such an operating system has been no
easy task, since it requires the computer’s
hardware and software to be more sophisticated
than in traditional designs. Apple has led the field
with its custom-designed Lisa and Macintosh
computers, although several other companies,
‘notably Microsoft, are preparing systems to run on
other popular computers such as the IBM PC.

Programs for these new operating systems are
very different from programs for traditional
systems. A large part of most programs deals with
the user interface — the routines that receive
commands and information from the user and
present the results. Opinions differ on how
programs should be operated, so nearly every
package has its own unique operating procedures

672 THE HOME COMPUTER ADVANCED COURSE

and needs to be learnt from scratch.
An integrated operating system provides a

built-in set of user interface routines for every
application program to use. When the program
wants to display a list of options on the screen for
the user to choose from, there’s a ready-made
routine to do it in the operating system. The
advantage of this, of course, is that all the
programs written to work with the operating
system will have roughly the same operating
procedures. Once you've learnt one program on
the system, youre well on the way to using all of the
others available!

One particular user interface provided for these
programs is the mouse. This is a pointing device
used to choose options from the screen via a
corresponding cursor. An alternative is the ‘touch-.
screen’, in which a matrix of light beams responds
to the touch of a finger. The display is divided into
separate ‘windows’, each containing a different
option or task. Technically, such a user interface
demands a fast processor, lots of memory and very
high-resolution graphics. But it is worth these
extra costs because the system is generally

_ applicable to almost any program available, it is
very easy to learn and it provides the simplest.
possible way for the user to be able to see and
switch between several applications at a time.

OPERATION CONTROL
It is important to appreciate the way this system
integrates programs. The program and user are
never in direct contact — everything has to be done
through the operating system and the operating
system is in control the whole time. In effect, each
application program becomes an extension of the
operating system, and the computer is a single
integrated ‘environment’. 3

‘This brings us onto the second major difference
in the way such systems function. In a traditional
system, communication between program and
Operating system is very much one-way. The
program asks for a specific task to be carried out
and the operating system subsequently does it.

In an integrated system, the operating system is
in control and make demands of the program. For
example, the operating system may send a
message to the program that says ‘Could you
redraw your display because the user has just
moved it to the other side of the screen’ or ‘Hold
everything, the user has moved the mouse to a
different application’ or ‘Here’s some data for you
taken from a spreadsheet.’ In other words, the
program has to be able to respond to the requests
and demands of the operating system as well as the
other way round.

Once you have this degree of co-operation
between all the software on a machine, it is easy to
build an integrated environment. Each program
has its own window on the screen. When the user
puts the mouse inside the window and chooses an
option, the operating system notifies that
particular program and the relevant operation is
carried out.

For example, if the user moves to the corner of
the window and selects the option to pick up that
window and move it to a new position, routines in
the operating system carry out the task and then, if
necessary, inform the program of the changes so
that it can amend its display appropriately. If the
user takes the mouse to a different window, the
original program is temporarily dormant and the
operating system starts working with the new
program — switching between applications is as
simple as moving the mouse.

Like large all-in-one programs, such systems
suggest that all the programs and information on
the screen at any one time are in memory and
available for use. To facilitate this, many systems
have massive memories — one Megabyte on the
Apple Lisa, for example, and 512 Kbytes on the

. Macintosh. Even then, it is usually necessary for
the operating system occasionally to swap
information and programs on and off disks to
accommodate everything. To make the system
acceptably fast, it is generally necessary for it to
operate on a hard disk.

In order for data to be exchanged easily
between programs, the operating system has a
built-in set of formats and routines for transferring

data. When you ‘export’ some data from one
program and ask to ‘import’ it to another, the
operating system will suspend the first program
and start the second, then ask the current
application to read in and process information
coming from another program. These pathways
can be set up automatically so that when you
change information in a spreadsheet, for example,
a graph of the same spreadsheet will automatically
change also. The two programs don’t run at the
same time — the operating system merely juggles
between the two of them as it needs to.
A slightly more sophisticated concept is

demonstrated by Apple’s Lisa, where information
can be ‘cut’ to a clipboard window from any
program and then ‘pasted’ into any other.
Formatting information is carried with the data so
that a graph produced with the business graphics
software will be transferred as a graph into another
program.

This then is the most sensible way to. create
integrated software. It enables you to mix and
match any programs on the system, switch
between them and move information between
them easily. The drawback is that it requires
sophisticated hardware that for the moment is
quite expensive, and there is very little software
available for you to integrate.

However, any technological innovation of this
scale will take time to become commonplace. The
mouse and windows interface was, for example,
developed by Xerox’s research teams over 10 years
ago but it’s taken until now for such a system to
appear in the shops!

INTEGRATED ENVIRONMENT

4
(J
4
J
‘J
)
‘]
4
)
2
J
()
‘
‘)

2
4
4
<4
“4
4
‘4
‘4
‘4
‘
Sd
,
‘4

SADA KK OOP OO
S BSS BEEK

XKKS

KEVIN JONES

Combined Operations
In an integrated system the
Operating system is enhanced
by the addition of a manager
module, which treats all current
programs and data as ‘tasks’ to
be scheduled and processed,
and handles the underlying
detailed operating system as
simple system support software.
This module moves tasks in and
out of main memory and on and
off disk according to user’s
requests and current task’s
needs. It is equipped to pass
information to and from
applications in standard forms,
and so enables the transfer of
data among the tasks. In effect
the manager is a high-priority
task itself, and its relationship
with the other tasks is symbiotic
rather than servile

THE HOME COMPUTER ADVANCED COURSE 673

RAISE THE ALARM

rkshop, we ‘designed or In the last section of '

and built a mains relay box that allows us to
control mains voltage devices with suitable
software. In this instalment, we look at the
design of some programs to use the mains
relay box and demonstrate some simple
domestic applications. :

: The mains relay box is designed t to Seeanola a mains
supply to any device that is plugged into it. In
response to a low voltage signal, the box makes or
breaks the mains power fed to the socket mounted
on the box. The mode of operation is such that the
mains supply to the socket is maintained while
there is a low voltage current supplied to the relay.
Therefore, we can trigger the relay directly from
the low voltage output box we built earlier in the
course (see page 574). The supply of mains power
from the relay box will mirror exactly the low.
voltage current supplied to the relay from the low |
voltage output box. Thus, the control of mains
supply can be achieved by the same software
techniques used to control low voltage devices.

If, for example, the mains relay’s low voltage
leads are connected to the positive and negative
connections of line 0 on the output box, and it is
plugged into a mains socket, then a mains current
will be supplied to the socket on the relay box
when bit 0 of the user port data register is sent high.
Whenever bit 0 is sent low then the mains supply
to the relay box’s socket will stop. Up to four mains
telay boxes can be connected to the low voltage
output box and switched in this way.
We can make use of this simple switching

arrangement to develop a number of control
systems that make use. of everyday household
appliances. First, let’s try the following simple
project, in which we make use of a tape recorder to
program your micro to respond ‘verbally’ to
pressure on a pad.

To begin, we need to record a series of phrases,
such as “Youre treading on my pad’, followed by
“You've just done it again’ and “Look, I’m warning -
you!’, and so on. Once the messages have been
recorded, we will connect the pad and recorder to
our user port system and write some software to
trigger off the phrases, one at a time, in response to
repeated pressure on the pad.
We have to make the following connections to

the user port system:

1) Plug the mains relay voltage leads into the
positive and negative terminals of line 0 on the low
voltage output box.
2) Plug the supply lead to the mains relay box into
a wall socket and switch it on.

674 THE HOME COMPUTER ADVANCED COURSE

3) Connect the two pressure pad leads across the
positive and negative terminals of line 7 of the
buffer box.

The main problem in designing the software to run
this system is ensuring that the tape recorder is
switched on and off with precision when a message
is played. Before we can write a program therefore
we must accurately time each message and enter
this data into the controlling program. Timing can
be done using your micro’s internal timer or a
stopwatch. If there are three phrases on the tape
lasting for periods of T(1), T(2) and T(3) seconds
then we can write a program which, on activation
from the pressure pad, turns on the tape recorder
for the correct time period for each successive
message. If the timing of the phrases is done
accurately then each phrase should be ready to
start when the tape recorder is switched on.

The following programs (for the Commodore
64 and the BBC Micro) will turn the tape recorder
on for three successive time intervals — T(1), T(2)
and T(3) — in response to triggers from the pressure
pad. You must set these variables to your own
timed values for the tape you record.

\y

ie N

PROGRAMMABLE ALARM CLOCK
Having developed a system sensitive to intrusive
footsteps, let’s now consider a project to turn your
micro into a handy programmable alarm clock.
Such a system can, of course, be tailored to meet
one’s exact needs. The program we give (in
versions for the Commodore 64 and the BBC
Micro) allows the user to enter:

1) the time of day;

2) the number of ‘snooze’ intervals (periods
between the bursts of the buzzer or music)
required;

3) for each snooze interval, whether music, alarm
or a silent period is required and the interval
length;

4) for each interval, whether a light should be
switched on;

5) the latest desirable rising time.

The program works on the assumption that the
following connections are made to the low voltage
output box:

1) A tape recorder is connected to line 0 through a
mains relay.

2) A table lamp is connected to line 1 Mnrough a
mains relay to line 1.

3) A nine-volt electric bell is connected directly to
line 3.

The program accepts the latest rising time and
works backwards through the programmed
intervals to calculate the start time for each
interval. Use is made of arrays to store the data
that tell us which appliances are to be on during
any one period. Note that the array variables are
given values that correspond to the bit value
required in the data register to turn that particular
appliance on. By making use of the logical OR
instruction, we can simply find the composite total
that must be placed in the data register to turn any
combination of the devices on.

Most of our programming effort has been
directed towards manipulating string variables to
allow numerical calculations to be made. This is
particularly true of the Commodore 64 program,
as the version of BAsic used by that machine lacks
the useful MOD and DIV commands available to
programmers of the BBC Micro.
We have now developed a truly flexible input

and output system for microcomputer control that
allows us to control LEDs, low voltage devices and
mains appliances, as well as allowing the micro to
accept and interpret data input from a range of
sensors. There are many possibilities now open to
us to design control systems for our own use. In the
examples given here, the micro is used as a
sophisticated programmable timer. Other
applications could involve turning electric fires on
and off in response to a pair of heat sensors, or
turning on an electric light at night. There are
endless possibilities for experimentation.

Commodore 64
REM **** CBM 64 ALARM CLOCK kx**

DOR=56579:DATREG=S6577¢

POKE DOR,255:POKEDATREG,@

PRINTCHRS(147):REM CLEAR SCREEN

INPUT"NUMBER OF SNOOZE INTERVALS ’?N

MEN+t1

DIM ACM) -M<M) Lmao, TSSCM) , T CMa

REM ***%* INPUT INTERVAL DATA ****

FOR C#l TG N

PRINTIPRINT" INTERVAL NUMBER"; C

INPUT"MUSIC. ALARM OR SILENCE <M/“A/S>"7 ANS

ANS=LEF TS CANS, 1?

IF ANS< >" M"ANOANS< > "A"“ANDANS<S 2"°S" THEN 210

IF ANS="M" THEN MCC) =1tmxC) <6

IF ANS="A" THEN ACC) S82 McC) -8

IF ANS="S" THEN ACC HO5h(Ca=8

INPUT”LIGHT ON (Y/N "7 ALS

LI=LEFTSCALS, 1)

IF LSk>°¥" AND LS<>"N* THEN e269

IF LSa"¥" THEN LCase: G0TOS18

Lod S8

INPUT" TIME INTERVAL (MINS) “2 T<C)

NERT C

INPUT"LATEST RISING TIME CHHMM) "> LIS

LTS=LTS+ "OG": REM ADD SECONDS

TSH(N+1IORELTSOREM LAST TIME

REM CONVERT LATEST TIME TO MINUTES

LMEGORVAL CLEFTS(LTS 2). +VAL CMIDS(L1S,3,2) >

INPUT" TIME NOW <HHINM) "> TNS

TIS=TNS+"OO"=REM START TIMER

REM *x#x** ANALYSE AND CALCULATE ****
REM ** CALC INTERVAL START TIMES «x
FOR C=N TO i STEP -1
LM=LM-TCC)IREDM START TIME IN MINS
HR= INTCLM/60)
MN=INTC60*%(LM/60-HR+.00000 1 >>
HR#=STRS(HR) FREM HOURS
MINS=STRECMND FREM MINS
MNSSMIDS< MNS, 2 LEN CIING) >
HR#=MIDS(HR®,2,LENCHRS))
REM &* ADD LEADING ZEROS «x
SPS="00"
HR#=LEFTS(SP#,2-LENCHRS®)) +HR®
MNS=LEFTS<(SPS,2-LEN (MNS)) +MINS
TS$(C) =HRS+MNS+ "OO"
NEXT C
‘3

REM **4k GO ¥ KH
PRINTCHRS< 147)
FOR Cei TO Né#l
IF TIS®<TS*(C) THENGOSUB?T 18 1GOTOS3e
DNSM<C) OR ACC) OR L¢CCXILREM GATREG DATA
POKE DATREG,DON
NEKT C
FOKE DATREG,@
ENO
ie

REM x*ee2% DISPLAY TIMER S/R «8x8
PRINTCHR#(145))1REM CRER UP
PRINTLEFT®(TI®,2)) "1 "I MIDSCTI€,3,2))
PRINT" "JRIGHTS<TIS,2)
RETURN

BBC Micro

1aa8
1WeH
{han

{ude
{ude
luds
{aad

145
{uae

Lush

THE HOME

REM BEC @LARM CLOCK
MODE?
DORS&FES? ss DAT REG=AFESS
CLS
INPUT "NUMBER OF SNOOZE INTERVALS” 5

Mahi+ 1

DIM ACM) MEM) .L<M) , TCM) , TSCM)
REM «#22 INPUT INTERVAL DATA =#=**

FORC=1 TO WW
PRINT INTERVAL NUMBER” :C

REPEAT
PRINT "MUSIC .GLARM OR SILENCE";

INPUT § (Mae So" sane
ANS=LEFTS CANS, 1)

UNTIL ANS="M" ORGNE= "A ORANGES" S"

TF ANS="M" THEN Mi Coal sat Cos
LF aivé="A" THEN Mi Co3=6 sax Coes

IF GNES"S" THEN Mi Cosi tlo=e

REPEAT
INPUT"LIGHT ON CY¥“NO" s6LS
ALE=LEFTECALS 12

UNTIL ALS="¥" OR ALS="N"

IF ALS="¥" THEN LéCo=2 ELSE Lc Co=e

INPUT“ TIME INTERVAL (MINS) ":1T (C3

HEXT C

INPUT "LATEST RISING TIME (HHP "LT?
TS(N+ 1)=S@00*(6@"UALCLEFTS*L1S, 2) 2)
TSCN#+ 1 OSTSCN+ 1D tVRLCRIGHTS*(LIS, 22)

5 REM CONVERT LATEST TIME [0 MINS
LhMeeoeVAL LEFPTS(LT#, 22?
LM=LMtVUALCRIGHTE*(LT$, 2)?

INPUT" TIME NOW < HHP sy TNS
TIME=6800*(6G SURLCLEFIS (INS, 23 3 3
TIME=TIME+VALU RIGHTS* TN®, 2) >

REM ANALYSE AND CALCULATE

FORCSH TO 1 STEP -1
LM=LM-T<C):REM INTERVAL START
TSt Ci =6800eLM
NEST ©

REM se£22 Gh sexe

CLS
FUR Cet TO Met

REPEGT

PROCt imer

URNITIL TIME s= Ts. to

REGDATGShMCl) OR Alla OR Lets

?DATREG=REGDATA

NEST oC

SORT REGSe8

BH END

DEF PROT imer

MINS TIME DI! Se66> MOb 4k

HR= TIME GIS! shat) MOO se

MINPSSTRECMING sHRSB=STREOHE

REM SOO LEADING EERUS

See="ub"
HRE=LEFTE(SPE, S- LEN HRS) 1 tHRS

PINS=LEF IE: SPS, 2-LENCMINS) o tMINS

PRINTTABCI SE. i 2 2HRE:" : " MINe

EMDR ROG

COMPUTER ADVANCED COURSE 675

IAN McKINNELL

Give Us A Bell
The commonest frequency
distribution - in nature and in
theory - is the Gaussian or
normal distribution, sometimes |

known as the bell curve

FREQUENCY
At its simplest, the frequency of any quantity is the
number of times it occurs during an observation
period. The word is used most often and with a
more specific meaning in physics and electronics,
and in statistical analysis. In the former fields,
frequency is understood to mean the number of
complete cycles of vibration of some observed
variable in unit time. It is measured in cps (cycles
per second), but the international unit is now
called the hertz. The British domestic electricity
supply is an alternating current whose frequency is
50 Hz; the musical note A above middle C has a
frequency of 440 Hz; the Z80A microprocessor
has a clock rate of 4.25 MHz (it performs
4,250,000 primitive machine operations per -
second); and the BBC’s Radio Four broadcasts at
a frequency of 94 MHz. The frequency of
vibration of wave phenomena such as sound and
light is associated with two other quantities —
wavelength (the distance between identical points
on two consecutive cycles such as peak to peak,
for example) and speed of propagation — in the
simple relationship:

Speed = Frequency X Wavelength

Thus, since electromagnetic radiation (of which
visible light, radio and infrared are examples) has
an observed speed of propagation of 324,000 km
per second, the wavelength of the Radio Four
transmissions must be 3.44 metres.

In statistics, frequency refers to the number of
occurrences of some quantity in a sample or a
population of similar quantities; so, in a sample of
100 British males we might observe that the
frequency of occurrence of right-handedness was
87, meaning that 87 people in that sample said
that they were right-handed. Statistical analysis
depends upon observations of frequency of
occurrence, and really derives from the
speculations of French scientist Blaise Pascal
(1623-62) on the expected frequency of
occurrence of the numbers obtained by throwing
two dice.

FREQUENCY DISTRIBUTION
If the results of an experiment are plotted on a
graph with the results along the x-axis and their
frequency of occurrence along the y-axis then the
result gives a picture of the frequency distribution
of those observations. In order to obtain a
ineaningful distribution it is usually necessary to
group the data into sub-classes, and plot the
frequency. against the sub-classes; if the data
group was people’s heights in metres, for example,
then the sub-classes might be 1.60-1.65 metres,
1.70-1.75 metres, 1.80-1.85 metres, and so on.
These distributions can be analysed
mathematically, and allow a great deal of
descriptive. and predictive information to be
inferred from what would otherwise be raw data.
A commonly occurring frequency distribution

is the normal or Gaussian distribution: many
human attributes are normally distributed

676 THE HOME COMPUTER ADVANCED COURSE

through the population, such as height, eye colour
and (allegedly) intelligence. Many sampling
distributions tend to a normal distribution as the
sample size tends to infinity.

Normal Distribution
STANDARD DEVIATION=10

MEAN=100

FREQUENCY OF OBSERVATION

as V2 |
90%

DATA VALUES 95%

Any particular sample is characterised by its
mean (the ‘average’ value of the sample data) and
its standard deviation (a measure of the extent to
which the sample data differs from the mean
value). If the distribution is normal, then
approximately 65 per cent of the sample data will
differ from the mean value by less than one
standard deviation, and over 90 per cent will differ
from it by less than two and a half standard
deviations. The entire science of statistics is built
on this kind of analysis of frequency distributions.

FULL DUPLEX
A telephone line is full duplex while a radio link is
usually half duplex: in the first case data can travel
in both directions simultaneously, while in the
second case the data travels in only one direction
at a time — hence the need to switch from transmit
to receive. An even lower level of connection is
simplexin which data travels in one direction only,
with no possibility of reversing the polarity —
broadcast radio or television, for example, is a
simplex communication. — |

FUZZY THEORY
In digital systems there are no half-measures, no
uncertainty — everything is one or zero, yes or no.
This binary logic is necessary at electronic levels,
but it has influenced the symbolic logic with which
computer programs model the real world. In this,
computer thought has departed significantly from
those aspects of human thought and logic that are
most valuable to us, namely our ability to deal with
half-truths and uncertainty, the ability to make
decisions on the basis of incomplete data. Fuzzy
logic attempts to introduce this ability to the
computer by constructing a multi-value logic in
which a statement may be true, probably true,
possibly true, probably untrue, or untrue. This
leads to some interesting insights and has so far
thrown up such bizarre artefacts as fuzzy sets and
fuzzy relationships. As artificial intelligence and
research progresses we may expect more
developments in this fascinating field.

INS AND OUTS

One of the most important aspects of
Assembly language programming is
controlling input and output. We look at the
operation of the two interface chips most
commonly used with the 6809 processor —
the 6820 PIA and 6850 ACIA — and show
how these are programmed.

The 6809 processor, like the 6502 but unlike the
Z80, does not have a separate input/output
address space and special I/O instructions.
Instead, the I/O device interface chips sit in the
normal address space and are handled using
memory access instructions. ‘To the processor,
these devices appear as memory locations exactly
like the rest of memory. This has the advantage of »
being simple and quick, but the disadvantage of
taking up a block of addresses that are then
unavailable for normal use. As a consequence, the
6809, despite having a 16-bit address bus capable
of addressing 64 Kbytes of memory directly, is
restricted to about 56 Kbytes maximum without
memory management hardware and software.

It is possible for some input/output devices to
be attached directly to the system data bus but

normally there is an interface chip in between.
These interface chips are sophisticated devices, as
complex as the microprocessor itself, and it is
normal to use chips belonging to the same family
as the processor since this makes the job of
attaching them and controlling them easier. The
two chips most commonly used with the 6809 are
the 6802 (or 6821) PIA (peripheral interface
adaptor), which handles parallel I/O, and the
6850 ACIA (asynchronous communications
interface adaptor), which deals with serial I/O.
Each of these has a number of registers, and
controlling them is a matter of reading and writing
the contents of those registers, treating them as
though they were normal memory locations.
There are three types of registers:
@ Control Registers: These are write-only
registers; values are stored in them in order to
program the chip for the particular options that
you require, such as setting the baud rate.
® Status Registers: These are read-only registers,
the values of which give an indication of the ‘status’
of the chip. These will show, for example, whether
an input has been received, whether the last output
has been transmitted, or whether an error has
occurred.

THE HOME COMPUTER ADVANCED COURSE 677

6809 CODE/MACHINE CODE

Peripheral
Matters
Printers require data to be
sent to them in particular
formats and at certain
speeds: it would be wasteful
to have the CPU deal with
such relatively trivial matters,
so the CPU sends the
character data to the
Peripheral Interface Adaptor,
and it devotes itself full-time
fo communicating with the
printer

KEVIN JONES

Bs

)

xe

[

wt

@ Data Registers: These are the registers that
contain the data being input or output, and so they
may be read-write or separate read and write.

In order to conserve memory space it is common

practice for more than one register to occupy the

same address. For example, a status register and a

control register may be at the same address; the

one that appears at that address is determined by

whether you are reading or writing to it. Similarly,
an input data register and an output data register
may share an address.

The 6820 PIA contains six registers and
occupies four consecutive bytes of memory space.
The chip actually contains two independent ports,
each of which uses three registers. The peripheral
side of the chip has eight data lines and two control
lines for each port. The two control lines would be
connected to appropriate control lines on the
peripheral so that they can be used to determine
status. Control line 1 is for incoming control
signals only, but control line 2 can be programmed
to receive or send control signals.

The three registers are:
@ A data register, which can function for both
input and output, since each bit can be
independently set.
@ A data direction register, each bit of which is
used to set the corresponding bit in the data
register as input (0) or output (1).
@ A combined control/status register.
The data direction register and the data register
share the same address. The state of one of the bits
in the control register determines which of these
appears at this address. The table in the margin
gives the offset from the base address of the chip
for the addresses of each of the registers.

The bits in the control/status register are
assigned as follows:

For the moment we shall not be considering the
use of interrupts, nor shall we be concerned with
the detailed effects of bits 1 and 4. Note that when
writing to the register to set the control bits it is
impossible to affect bits 6 and 7.

The first of our example programs sets up and
uses a 6820 chip to control a printer via a standard
Centronics interface. The latter specifies a large
number of control lines as well as the eight data

678 THE HOME COMPUTER ADVANCED COURSE

lines. We are not concerned with the detail of these
except to note that one control line (called the
strobe) is used to signal to the printer that a
character is on the way. This should be connected
to control line 2, which must be set for output.
Another control signal (termed the acknowledge)
is used by the printer to.indicate that it is ready for
the next character to be sent. This should be
‘connected to control line 1. The eight data lines
should clearly be connected to the eight data
outputs from the PIA port.

To set up the port we must select the data
direction register and program all eight bits for
output, then select the data register, and set
control line 2 for output. To use the chip we
continually read the control/status register until a
one appears in bit 7, indicating that the printer is
ready for a character. We can then write a
character to the data register, which automatically
sends a control signal out on control line 2. Bit 6
will be set to one when the character has been
transmitted. We must then read the data register to
clear bits 6 and 7 and repeat the process until the
last character has been transmitted. The process of
sending and receiving control signals between the
processor and the peripheral is known as
handshaking. |
We shall assume that the base address of the

PIA is given in a table of addresses located at
$3000. On entry to the printing subroutine,
processor register A contains the index into this
table, and Y contains the address of the string to be
printed. The string is stored in the normal format;
that is, length byte first. There are two subroutines,
one to set up the port and one to print the string.

6850 ACIA
The 6850 ACIA is a UART (universal
asynchronous receiver/transmitter) that is used
for serial communication, normally using the
RS232 protocol and possibly a modem. It has four
registers and occupies two addresses. There are
five connections to the chip on the peripheral side:
one line is for transmitted data, one is for received
data, and three control lines are for handshaking, if
this is required. Two of these are for incoming
control signals — DCD (Data Carrier Detect) and

_ CTS (Clear To Send) — and one is for outgoing
sionals — RTS (Request To Send). The uses of
these lines should be fairly obvious from their
names, and they may be connected to the similarly
named lines on a standard RS232.

The four ACIA registers are given in the
margin. In the control register, the most significant
bit (bit 7) is used to enable interrupts for receiving
data. Bits 5 and 6 are used to enable or disable
transmission interrupts and to determine the
nature of the control signal sent out on the RTS
line. Bits 2, 3 and 4 are used to determine the size
of the ‘package’ that is actually transmitted. When
a byte is transmitted over a serial link there are
usually at least 10 bits sent, beginning with a start
bit, which is detected by the receiver so that it
knows that data is following. The actual data itself

LE
—— —

can be seven or eight bits, and there may bea parity

bit appended to that data. A parity bit is an extra

bit that helps detect transmission errors. Finally,

there may be one or two stop bits. The various
options available are as follows:

The two least significant bits (0 and 1) are used to
determine the speed of transmission and
reception. This is done by setting a divisor for the
clock rate. The 6850 does not have its own clock,
and therefore must be provided with an external
one, typically set at 1,760 Hz.

The combination not shown in the table, when

both these bits are one, causes a master reset of the

chip.
In the status register the bits have the following

functions: wal!

Our second example program uses a 6850 chip to
receive a character string, terminated by a carriage
return, from a remote terminal. The principle is to
program the chip appropriately, then loop round
checking if the receive data register is full. When it
is, we remove the data byte, which resets bit 0 in
the status register. The process is repeated until the
character received is a carriage return (ASCII
code 13). We shall be ignoring any transmission
errors, though checking for them by masking the
contents of the status register to see if any of the
error indicating bits are set is quite
straightforward. We shall assume a fairly common
protocol: eight data bits, no parity and two stop
bits and a divide by 16 clock speed. The first
subroutine programs the chip, the second receives
the data.

THE HOME COMPUTER ADVANCED COURSE 679

Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card. |

OT yelsuedelbiacloi- avalestes(:igie ofere O40) @fessieres (©) feist el

General-Purpose Arithmetic IW bierelalchetcreles @)a10) (@re)eisve)|

60808 VODE

RESTART TO LOCATION 0038,

INDIRECT CALL USING HEGISTER
1 AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

Symbolic Flags 18 J ofexeral=) No.of No.of M No.of T
Mnemonic Operation os £ H PIV N C- 76 543 210 Hex Bytes Cycles States Comments

DAA Cleoevicec 2ee Ceaice || — - = = 00 100 111 2/7 1 1 4 Biro late) cielo si

into packed BCD accumulator.

following add or

Subtract with

packed

P BOB ees clacs.
eat AA —lrrr—et—‘NRNNCCONWOUCOiCOU'‘OCONONCN.C. i aise 1 4 Complement

accumulator

fone s

(oe)gaie)cigaici aie)

Nie 8 a = =. (oo hCUmr CC 2 8 INicleiic: cee Gwe)
: O01 000 100) 44 complement).

CCF So — ..r—O—“‘“ONNNRC((CC CC ci wise ssi a 1 4 Complement carry
flag.

SUF CY — 1 — i: =. 1 4 Set carry flag.
; NOP No operation * © ®F © . * © * (OOO 00 | | 4

HALT CPU halted — .- - . 5 . . . = 76 1 1 4

DI * ies . © — 71 110 O01 Po | | 4

El * ipe- -aaz=SC S—sSs—Ss—SOsa_SNCC SCLC 1 4
IM 0 Set interrupt — . | | ee 8 2 8

| geo 8 O1 000 110 46

IM 1 Set interrupt - . - =| .. EO 2 i
mode | O1 O10 110 56

IM 2 set interrupt — ©8§§ = 2 2 8
mode 2 Oi 011 20 DE

NOTES [FF indicates the interrupt enable fiip-flop

_CY indicates the carry flip-flop.

* indicates interrupts are nol sampied at the end of El or DI

Flag Notation: « = flag not affected, O = flag reset, | = flag set, X = flag iS unknown,

t = flag is affected according to the result of the operation.

